Dive into the World of Zero Tests, Zero Prototypes, Zero Downtime

Are You Reaping the Benefits of the Manufacturing 4.0 Transformation?

Attaining greater process efficiency through digital transformation is vital if you want to get ahead in today’s manufacturing environment. In this interview, Dr. Fouad el Khaldi, discusses critical parts of the manufacturing 4.0 transformation which enable predictive maintenance, detection of early signals of deviation and prediction of future incidents with precision.

Monday, November 11, 2019
By Céline Gallerne

Why is the digital twin a critical part of manufacturing 4.0 transformation?

Today, manufacturing process design, process validation, and actual production are well optimized but remain disconnected. Thanks to recent developments (Big Data, Internet of Things, Artificial Intelligence, etc.), these three phases finally connect! Engineers can benefit from faster iteration loops and better assess the impact of process design decisions.

Dr. Fouad el Khaldi
Strategy & Innovation
General Manager
ESI Group

Data from real life performance offers opportunities for continuous learning, which will benefit the next generation of products by upgrading design assumptions. This becomes key as we speak increasingly of predictive maintenance and managing a product’s performance throughout its lifetime (Product Performance Lifecycle™ - Management or PPL-M), rather than delivering a product that performs on day one (what conventional Product Lifecycle Management or PLM covers).

What role do you see for digital twins in Smart Factories?

Virtual Prototyping is a powerful methodology enabling the design and validation of manufacturing processes. It’s at the core of ESI’s Hybrid Twin™ approach, where we combine the virtual prototype with the data coming from industrial plants to measure the real operational performance, to adjust the initial model to real life data and context, and to detect early signals of deviation. A Hybrid Twin™ enables asset managers to get the information necessary to assess cause & effect relationships, and to implement the appropriate corrective measures.

Why hybrid? This is crucial in overcoming the limitations of a digital twin: indeed, if we limit ourselves to data collected from historical and real-life operations, we can only predict behaviors that already took place. Whereas building on a virtual prototype that reproduces the asset as-good-as-real (capturing for instance its material characteristics after manufacturing and assembly) helps us predict almost any kind of future incident with precision, even in the case of changing parameters (materials variations, operating conditions, etc.).

How will simulation and modeling evolve to support optimization of manufacturing processes including forming, welding, additive manufacturing, and assembly?

Modern manufacturers rely on simulation and pilot tests to ensure that they’re meeting various time, quality, cost requirements in their manufacturing process design and validation. However, they typically limit the use of simulation to the methods and the validation engineering departments and haven’t deployed it into production for various reasons ─ mainly related to complexity and response time.

Good news for production managers: ESI’s innovative Parametric Reduced Model technology enables the development of a Hybrid Twin™ with real time responses, derived from a predictive detailed 3D model built in the process design and validation phase (see graphic). The Hybrid Twin™ opens new opportunities to augment the PLC (Programmable Logic Controller) capacity for smarter machine control. The Hybrid Twin™ will be loaded on site as edge computing (small processors next to the machine) for obvious performance and security, benefiting from recent IoT advances, such as 5G. Factory production managers will be able to measure and predict production performance more efficiently to detect early signs of deviation and to anticipate troubleshooting - thus maintaining the required quality (reducing scraps) and ensuring optimal performance.

Early pilot projects are already demonstrating the feasibility of such a solution and showing manufacturers how the simulation capabilities will be adapted and streamlined to be implemented right at the heart of the factories ─ with very encouraging outcomes.

For more information visit Hybrid Twin™

Céline Gallerne

Influencer Marketing Manager

Céline works for ESI as their Influencer Marketing Manager. She identifies key trends and works with knowledgeable influencers within the simulation industry so that she can share the latest advances and disseminate best practices, demonstrating real business value. Surrounded by an international crowd of engineers specialized in various fields, from material physics to artificial intelligence, Céline enjoys reporting on topics related to innovation, digital transformation and sustainability. She enjoys the fast paced, bubbly, creative environment, the palpable passion for technology, and the taste for challenge.